答案
证明:根据题意∠AEC=∠CFB=90°,
∴∠CAE+∠ACE=90°,∠BCF+∠ACE=90°.
∴∠CAE=∠BCF.
在△ACE与△BCF中,
∵
,
∴△ACE≌△BCF.
∴BF=CE.
∵∠BDF+∠DBF=90°,∠CGE+∠GCE=90°,∠GCE+∠HDC=90°,∠BDF=∠ADC(对顶角相等),
∴∠CGE=∠BDF.
在△CEG与△BFD中,
∵
,
∴△CEG≌△BFD(AAS).
BD=CG,DF=GE.
证明:根据题意∠AEC=∠CFB=90°,
∴∠CAE+∠ACE=90°,∠BCF+∠ACE=90°.
∴∠CAE=∠BCF.
在△ACE与△BCF中,
∵
,
∴△ACE≌△BCF.
∴BF=CE.
∵∠BDF+∠DBF=90°,∠CGE+∠GCE=90°,∠GCE+∠HDC=90°,∠BDF=∠ADC(对顶角相等),
∴∠CGE=∠BDF.
在△CEG与△BFD中,
∵
,
∴△CEG≌△BFD(AAS).
BD=CG,DF=GE.