试题

题目:
青果学院如图,已知等腰直角△ACB的边AC=BC=a,等腰直角△BED的边BE=DE=b,且a<b,点C、B、E在一条直线上,连接AD.
(1)求△ABD的面积;
(2)如果点P是线段CE的中点,连接AP、DP得到△APD,求△APD的面积.
(以上结果先用含a、b代数式表示,后化简)
答案
解:(1)∵AC=BC=a,BE=DE=b,
∴S△ABD=S梯形ACED-S△ABC-S△BDE
=
1
2
(a+b)(a+b)-
1
2
a2-
1
2
b2
=
1
2
(a2+2ab+b2-a2-b2
=ab;

(2)∵P为CE的中点,
∴CP=EP=
1
2
(a+b),
∴S△APD=S梯形ACED-S△APC-S△BEP
=
1
2
(a+b)(a+b)-
1
2
a+b
2
-
1
2
a+b
2

=
1
2
a2+ab+
1
2
b2-
1
4
a2-
1
4
ab-
1
4
ab-
1
4
b2
=
1
4
(a+b)2
解:(1)∵AC=BC=a,BE=DE=b,
∴S△ABD=S梯形ACED-S△ABC-S△BDE
=
1
2
(a+b)(a+b)-
1
2
a2-
1
2
b2
=
1
2
(a2+2ab+b2-a2-b2
=ab;

(2)∵P为CE的中点,
∴CP=EP=
1
2
(a+b),
∴S△APD=S梯形ACED-S△APC-S△BEP
=
1
2
(a+b)(a+b)-
1
2
a+b
2
-
1
2
a+b
2

=
1
2
a2+ab+
1
2
b2-
1
4
a2-
1
4
ab-
1
4
ab-
1
4
b2
=
1
4
(a+b)2
考点梳理
整式的混合运算;等腰直角三角形.
(1)三角形ABD的面积由梯形ACED的面积-三角形ABC的面积-三角形BDE的面积,表示出关系式,利用完全平方公式化简,去括号合并即可得到结果;
(2)由P为CE的中点,得到CP=PE,由三角形APD的面积=梯形ACED的面积-三角形APC的面积-三角形BEP的面积,利用完全平方公式化简,去括号合并即可得到结果.
此题考查了整式加减运算的应用,弄清题意列出相应的关系式是解本题的关键.
应用题.
找相似题