试题
题目:
(2009·无锡模拟)如图,△ABC中,∠C=90°,AC=BC,∠BAC的角平分线交BC于D,从点B作AF的垂线交AF于点E.
(1)根据题意,用直尺、圆规补全图形(不要写作法);
(2)求证:AD=2BE.
答案
解:(1)作图如下:(2分)
(2)延长BE交AC的延长线于点F(3分)
∵AD平分∠BAC,∠ACB=∠BCF=90°,
∴∠BAE=∠FAE∴∠CAD=∠CBF
又∠AEB=∠AEF=90°又AC=BC
∴∠ABE=∠AFE(4分)
∴△ACD≌△BCF(7分)
∴BE=EF(5分)
∴AD=2BE.(8分)
解:(1)作图如下:(2分)
(2)延长BE交AC的延长线于点F(3分)
∵AD平分∠BAC,∠ACB=∠BCF=90°,
∴∠BAE=∠FAE∴∠CAD=∠CBF
又∠AEB=∠AEF=90°又AC=BC
∴∠ABE=∠AFE(4分)
∴△ACD≌△BCF(7分)
∴BE=EF(5分)
∴AD=2BE.(8分)
考点梳理
考点
分析
点评
专题
等腰直角三角形;全等三角形的判定与性质.
(1)以B为圆心作圆,使得AD相切⊙B于点E,再用直尺连接BE即可;
(2)延长BE交AC的延长线于点F.利用角平分线的性质以及等腰三角形的求得∠CAD=∠CBF,∠ABE=∠AFE;然后根据全等三角形的判定定理ASA推知△ACD≌△BCF,所以由全等三角形的对应边相等求得BE=EF,所以AD=2BE.
本题考查了等腰直角三角形的性质、全等三角形的判定与性质.等腰直角三角形有“三线合一”的性质.
证明题.
找相似题
(2013·重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为( )
(2013·绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE
2
=2(AD
2
+AB
2
),
其中结论正确的个数是( )
(2013·衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )