试题
题目:
(2012·南岗区二模)如图,已知△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,求证:AD=CE.
答案
证明:在等腰直角三角形△ABC、△DBE中,
∠ABC=∠DBE=90°,AB=BC,BD=BE,
∵∠ABD+∠DBC=∠ABC=90°,
∠EBC+∠DBC=∠DBE=90°,
∴∠ABD=∠CBE,
在△ABD和△CBE中,
∵
AB=BC
∠ABD=∠CBE
BD=BE
,
∴△ABD≌△CBE(SAS),
∴AD=CE.
证明:在等腰直角三角形△ABC、△DBE中,
∠ABC=∠DBE=90°,AB=BC,BD=BE,
∵∠ABD+∠DBC=∠ABC=90°,
∠EBC+∠DBC=∠DBE=90°,
∴∠ABD=∠CBE,
在△ABD和△CBE中,
∵
AB=BC
∠ABD=∠CBE
BD=BE
,
∴△ABD≌△CBE(SAS),
∴AD=CE.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰直角三角形.
根据等腰直角三角形的性质可得BF=CF,DF=EF,再根据同角的余角相等求出∠ABD=∠CBE,然后利用“边角边”证明△ABD和△CBE全等,根据全等三角形对应边相等即可得证.
本题考查了全等三角形的判定与性质,等腰直角三角形的性质,根据同角的余角相等求出∠ABD=∠CBE是证明两三角形全等的关键.
证明题.
找相似题
(2013·重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为( )
(2013·绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE
2
=2(AD
2
+AB
2
),
其中结论正确的个数是( )
(2013·衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )