试题

题目:
(2012·延庆县二模)(1)如图1:在△ABC中,AB=AC,当∠ABD=∠ACD=60°时,猜想AB与BD+CD数量关系,请直接写出结果
AB=BD+CD
AB=BD+CD

(2)如图2:在△ABC中,AB=AC,当∠ABD=∠ACD=45°时,猜想AB与BD+CD数量关系并证明你的结论;
(3)如图3:在△ABC中,AB=AC,当∠ABD=∠ACD=β(20°≤β≤70°)时,直接写出AB与BD+CD数量关系(用含β的式子表示).
青果学院
答案
AB=BD+CD

青果学院解:(1)如图1,延长BD至E,使BE=AB,连接AE、CE,
∵∠ABD=60°,
∴△ABE是等边三角形,
∴AE=AB,∠AEB=60°,
∵AB=AC,
∴AC=AE,
∴∠ACE=∠AEC,
∵∠ACD=60°,
∴∠ACE-∠ACD=∠AEC-∠AEB,
即∠DCE=∠DEC,
∴DE=CD,
∴BE=BD+DE=BD+CD,
∴AB=BD+CD;
故答案为:AB=BD+CD;

(2)猜想:AB=
2
2
(BD+CD).
理由如下:如图2,过点A作AE⊥AB交BD的延长线于点E,连接CE,青果学院
∵∠ABD=45°,
∴△ABE是等腰直角三角形,
∴AE=AB,∠AEB=45°,
∵AB=AC,
∴AC=AE,
∴∠ACE=∠AEC,
∵∠ACD=45°,
∴∠ACE-∠ACD=∠AEC-∠AEB,
即∠DCE=∠DEC,
∴DE=CD,
∴BE=BD+DE=BD+CD,
在Rt△ABE中,AB=BE·cos∠ABD=(BD+CD)·cos45°=
2
2
(BD+CD),
即AB=
2
2
(BD+CD);

(3)如图3,过点A作AF⊥BD于点F,延长BD到E,使EF=BF,连接AE、CE,青果学院
则AE=AB(等腰三角形三线合一),
∴∠AEB=∠ABD=β,
∵AB=AC,
∴AC=AE,
∴∠ACE=∠AEC,
∵∠ACD=β,
∴∠ACE-∠ACD=∠AEC-∠AEB,
即∠DCE=∠DEC,
∴DE=CD,
∴BE=BD+DE=BD+CD,
在Rt△ABF中,AB·cos∠ABD=
1
2
BE,
即AB·cosβ=
1
2
(BD+CD).
考点梳理
全等三角形的判定与性质;等腰三角形的性质;等腰直角三角形.
(1)延长BD至E,使BE=AB,连接AE、CE,然后证明△ABE是等边三角形,根据等边三角形的性质可得AE=AB,∠AEB=60°,然后证明∠DCE=∠DEC,根据等角对等边的性质可得DE=CD,从而得到BE=BD+CD,再根据等边三角形的三条边都相等得解;
(2)过点A作AE⊥AB交BD的延长线于点E,连接CE,然后证明△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AB=AE,∠AEB=45°,然后证明∠DCE=∠DEC,根据等角对等边的性质可得DE=CD,从而得到BE=BD+CD,再根据等腰直角三角形斜边与直角边的关系得解;
(3)过点A作AF⊥BD于点F,延长BD到E,使EF=BF,连接AE、CE,根据等腰三角形三线合一的性质可得AB=AE,然后证明∠DCE=∠DEC,根据等角对等边的性质可得DE=CD,从而得到BE=BD+CD,再根据∠ABD的余弦等于邻边比斜边列式整理即可得解.
本题考查了等腰三角形的性质,等边三角形的判定与性质,等腰直角三角形的性质,根据角度的不同,作辅助线构造出等腰△ACE,把BD+CD转化为BE是解题的关键,也是本题的难点.
几何综合题.
找相似题