试题

题目:
青果学院如图所示,△ABC中,BE⊥AC,AD⊥BC,AO与BE相交于F点,BF=AC,若AD=2,则AB=
2
2
2
2

答案
2
2

解:∵BE⊥AC,AD⊥BC,
∴∠BDF=∠ADC=90°,∠BEA=90°,
∵∠AFE=∠BFD,
∴∠FAE=∠FBD,
在△ADC和△BDF中
∠ADC=∠BDF
∠DBF=∠DAC
AC=BF

∴△ADC≌△BDF(AAS),
∴AD=BD=2,
∴AB=
2
AD=2
2

故答案为2
2
考点梳理
全等三角形的判定与性质;等腰直角三角形.
由BE⊥AC,AD⊥BC得到∠BDF=∠ADC=90°,∠BEA=90°,根据等角的余角相等得到∠FAE=∠FBD,则根据“AAS”可判断△ADC≌△BDF,所以AD=BD=2,
然后根据等腰直角三角形的性质计算AB的长.
本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰三角形的性质.
计算题.
找相似题