试题
题目:
如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.
(1)若CD=1cm,求AC的长;
(2)求证:AB=AC+CD.
答案
(1)解:∵∠C=90°,AD是△ABC的角平分线,DE⊥AB,
∴DE=CD=1,
∵AC=BC,∠C=90°,
∴∠B=45°,
∴△BDE是等腰直角三角形,
∴BD=
2
DE=
2
,
∴BC=CD+BD=
2
+1;
(2)证明:在△ACD和△AED中,
AD=AD
DE=CD
,
∴△ACD≌△AED(HL),
∴AC=AE,
∵△BDE是等腰直角三角形,
∴BE=DE=CD,
∵AB=AE+BE,
∴AB=AC+CD.
(1)解:∵∠C=90°,AD是△ABC的角平分线,DE⊥AB,
∴DE=CD=1,
∵AC=BC,∠C=90°,
∴∠B=45°,
∴△BDE是等腰直角三角形,
∴BD=
2
DE=
2
,
∴BC=CD+BD=
2
+1;
(2)证明:在△ACD和△AED中,
AD=AD
DE=CD
,
∴△ACD≌△AED(HL),
∴AC=AE,
∵△BDE是等腰直角三角形,
∴BE=DE=CD,
∵AB=AE+BE,
∴AB=AC+CD.
考点梳理
考点
分析
点评
角平分线的性质;等腰直角三角形.
(1)根据角平分线上的点到角的两边的距离相等可得DE=CD=1,再判断出△BDE是等腰直角三角形,然后求出BD,再根据BC=CD+BD求解即可;
(2)利用“HL”证明△ACD和△AED全等,根据全等三角形对应边相等可得AC=AE,再根据AB=AE+BE整理即可得证.
本题考查了角平分线的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,熟记各性质是解题的关键.
找相似题
(2013·重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为( )
(2013·绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE
2
=2(AD
2
+AB
2
),
其中结论正确的个数是( )
(2013·衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )