试题
题目:
已知△ABC是腰长为1的等腰直角三角形,以△ABC的斜边AC为直角边,画第二个等腰直角三角形ACD,再以△ACD的斜边AD为直角边,画第三个等腰直角三角形ADE,…,依此类推,第7个等腰直角三角形的腰长是
8
8
.
答案
8
解:根据条件第一个等腰直角三角形的腰长是1,第二个是1×
2
,
第三个是:1×
2
×
2
=(
2
)2,
依此类推,第七个的腰长是(
2
)
6
=8.
故答案是:8.
考点梳理
考点
分析
点评
专题
等腰直角三角形.
首先求得第二个三角形的腰长,再根据勾股定理即可求得第三个的腰长,得到各个三角形腰长之间的关系,即可求解.
本题主要考查了等腰三角形的性质,以及勾股定理,正确理解各个三角形之间的关系是解决本题的关键.
规律型.
找相似题
(2013·重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为( )
(2013·绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE
2
=2(AD
2
+AB
2
),
其中结论正确的个数是( )
(2013·衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )