试题
题目:
(2011·武清区一模)如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACD重合,如果
AP=
2
,那么PD的长等于
2
2
.
答案
2
解:∵△ABC是等腰直角三角形,
∴AC=AB,∠BAC=90°,
∵△ABP绕点A逆时针旋转后能与△ACD重合,即AB与AC重合,AP与AD重合,
∴AP=AD,∠PAD=∠BAC=90°,
∴△APD为等腰直角三角形,
∴PD=
2
AP,
∵AP=
2
,
∴PD=
2
×
2
=2.
故答案为2.
考点梳理
考点
分析
点评
专题
旋转的性质;等腰直角三角形.
根据等腰直角三角形得到AC=AB,∠BAC=90°,因为△ABP绕点A逆时针旋转后能与△ACD重合,则AB与AC重合,AP与AD重合,根据旋转的性质有AP=AD,∠PAD=∠BAC=90°,得到△APD为等腰直角三角形,则有PD=
2
AP,然后把AP=
2
代入计算即可.
本题考查了旋转的性质:旋转前后两图形全等,即对应角线段,对应线段线段;对应点的连线段所夹的角等于旋转角;对应点到旋转中心的距离相等.也考查了等腰直角三角形的判定与性质.
计算题.
找相似题
(2013·重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为( )
(2013·绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE
2
=2(AD
2
+AB
2
),
其中结论正确的个数是( )
(2013·衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )