试题
题目:
如图,△ABC的三个顶点在⊙0上,AD⊥BC,D为垂足,E是
BC
的中点,
求证:∠OAE=∠EAD.(写出两种以上的证明方法)
答案
证明:(1)连接OB,
则∠AOB=2∠ACB,∠OAB=∠OBA,
∵AD⊥BC,
∴∠OAB=
1
2
(180°-∠AOB),
=90°-
1
2
∠AOB=90°-∠ACB=∠DAC,
∵E是弧BC的中点,
∴∠EAB=∠EAC,
∴∠EAO=∠EAB-∠OAB=∠EAC-∠DAC=∠EAD.
(2)连接OE,
∵E是
BC
的中点,
∴弧BE=弧EC,
∴OE⊥BC,
∵AD⊥BC,
∴OE∥AD,
∴∠OEA=∠EAD,
∵OE=OA,
∴∠OAE=∠OEA,
∴∠OAE=∠EAD.
证明:(1)连接OB,
则∠AOB=2∠ACB,∠OAB=∠OBA,
∵AD⊥BC,
∴∠OAB=
1
2
(180°-∠AOB),
=90°-
1
2
∠AOB=90°-∠ACB=∠DAC,
∵E是弧BC的中点,
∴∠EAB=∠EAC,
∴∠EAO=∠EAB-∠OAB=∠EAC-∠DAC=∠EAD.
(2)连接OE,
∵E是
BC
的中点,
∴弧BE=弧EC,
∴OE⊥BC,
∵AD⊥BC,
∴OE∥AD,
∴∠OEA=∠EAD,
∵OE=OA,
∴∠OAE=∠OEA,
∴∠OAE=∠EAD.
考点梳理
考点
分析
点评
专题
圆心角、弧、弦的关系;三角形内角和定理.
方法一:连接OB,利用同弧所对的圆周角是它所对圆心角的一半,三角形内角和定理,同弧所对的圆周角相等即可证明此题.
方法二:连接OE,利用垂径定理可得OE⊥BC,再利用AD⊥BC,可得OE∥AD,然后即可证明.
此题主要考查学生对三角形内角和定理和圆心角、弧、弦的关系等知识点的理解和掌握,此题难度不大,关键是作好辅助线,方法一:连接OB,方法二:连接OE,属于中档题.
证明题.
找相似题
如图,AB为⊙O的直径,点C、D在⊙O上,CE⊥AB,DF⊥AB,垂足分别为E,F,且弧AC与弧BD相等,问AE与BF相等吗?为什么?
如图,AB是⊙O的直径,E是⊙O上的一点,
BE
的度数为40°,过点O作OC∥BE交⊙O于点C,求∠BCO的度数.
如图,A、B、C都是⊙O上的点,
AC
=
BC
,CD⊥OA于D,CE⊥OB于E.求证:OD=OE.
如图,⊙O上三点A、B、C,AB=AC,∠ABC的平分线交⊙O于点E,∠ACB的平分线交⊙O于点F,BE和CF相交于点D,四边形AFDE是菱形吗?验证你的结论.
如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF的中点,AD⊥BC于点D,求证:AD=
1
2
BF.