试题
题目:
如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF的中点,AD⊥BC于点D,求证:AD=
1
2
BF.
答案
证明:连接OA,交BF于点E,
∵A是弧BF的中点,O为圆心,
∴OA⊥BF,
∴BE=
1
2
BF,
∵AD⊥BC于点D,
∴∠ADO=∠BEO=90°,
在△OAD与△OBE中,
∠ADO=∠BEO=90°
∠AOD=∠BOE
BO=AO
,
∴△OAD≌△OBE(AAS),
∴AD=BE,
∴AD=
1
2
BF.
证明:连接OA,交BF于点E,
∵A是弧BF的中点,O为圆心,
∴OA⊥BF,
∴BE=
1
2
BF,
∵AD⊥BC于点D,
∴∠ADO=∠BEO=90°,
在△OAD与△OBE中,
∠ADO=∠BEO=90°
∠AOD=∠BOE
BO=AO
,
∴△OAD≌△OBE(AAS),
∴AD=BE,
∴AD=
1
2
BF.
考点梳理
考点
分析
点评
专题
圆心角、弧、弦的关系;全等三角形的判定.
连接OA,根据垂径定理可知,BE=
1
2
BF,再证明△OAD≌△OBE,进而得到AD=BE,从而问题得证.
本题主要考查了垂径定理及其推论,对于一个圆和一条直线,若直线具备①过圆心,②垂直于弦,③平分弦,④平分优弧,⑤平分劣弧这五条中任意两条,其他三条成立.
证明题.
找相似题
如图,AB为⊙O的直径,点C、D在⊙O上,CE⊥AB,DF⊥AB,垂足分别为E,F,且弧AC与弧BD相等,问AE与BF相等吗?为什么?
如图,AB是⊙O的直径,E是⊙O上的一点,
BE
的度数为40°,过点O作OC∥BE交⊙O于点C,求∠BCO的度数.
如图,A、B、C都是⊙O上的点,
AC
=
BC
,CD⊥OA于D,CE⊥OB于E.求证:OD=OE.
如图,⊙O上三点A、B、C,AB=AC,∠ABC的平分线交⊙O于点E,∠ACB的平分线交⊙O于点F,BE和CF相交于点D,四边形AFDE是菱形吗?验证你的结论.
已知:如图,在△ABC中,∠ACB=90°,∠B=25°,以点C为圆心、AC为半径作⊙C,交AB于点D,求
AD
的度数.