试题
题目:
在⊙O中,
AB
=2
CD
,那么
2
2
.
A.AB=2CD
B.AB=CD
C.AB<2DC
D.AB>2DC.
答案
C
解:取
AB
的中点E,连结BE、AE,如图,
∵
AB
=2
CD
,
∴
CD
=
AE
=
BE
,
∴CD=AE=BE,
而AE+BE>AB,
∴AB<2CD.
故选C.
考点梳理
考点
分析
点评
圆心角、弧、弦的关系;三角形三边关系.
取
AB
的中点E,连结BE、AE,则
CD
=
AE
=
BE
,根据圆心角、弧、弦的关系得到CD=AE=BE,再根据三角形三边的关系得到AE+BE>AB,所以AB<2CD.
本题考查了圆心角、弧、弦的关系:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
找相似题
如图,AB为⊙O的直径,点C、D在⊙O上,CE⊥AB,DF⊥AB,垂足分别为E,F,且弧AC与弧BD相等,问AE与BF相等吗?为什么?
如图,AB是⊙O的直径,E是⊙O上的一点,
BE
的度数为40°,过点O作OC∥BE交⊙O于点C,求∠BCO的度数.
如图,A、B、C都是⊙O上的点,
AC
=
BC
,CD⊥OA于D,CE⊥OB于E.求证:OD=OE.
如图,⊙O上三点A、B、C,AB=AC,∠ABC的平分线交⊙O于点E,∠ACB的平分线交⊙O于点F,BE和CF相交于点D,四边形AFDE是菱形吗?验证你的结论.
如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF的中点,AD⊥BC于点D,求证:AD=
1
2
BF.