试题
题目:
如图⊙O的弦AB⊥CD于H,D、E关于AB对称,BE延长线交⊙O于F,连接FC,作OG⊥AB于G,则下列结论:①FC=CE,②
AF
=
AD
,③∠B=∠BEH,④△ECF∽△EBD,成立的是( )
A.①②③
B.①②④
C.②③④
D.①②③④
答案
B
解:连接FC,BD,AC,
∵D、E关于AB对称,
∴∠BDE=∠BED,
又∠CFE=∠BDE,
∴∠CFE=∠CEF,
∴△ECF∽△EBD.故④正确.
∴FC=CE.故①正确.
∠ABE+∠BED=90°,∠A+∠ACH=90°,
∵∠A=∠EDB,
∴∠ABF=∠ACD,
∴
AF
=
AD
.故②正确.
∵∠EBD≠90°,
∴∠B≠∠BEH.故③错误.
故选B.
考点梳理
考点
分析
点评
专题
圆心角、弧、弦的关系;余角和补角;轴对称的性质;相似三角形的判定.
①连接FC,BD,先证∠BDE=∠BED,进而证得∠CFE=∠CEF,所以可得FC=CE.
②连接AC,由于∠ABE+∠BED=90°,∠A+∠ACH=90°,根据①的结论,∠A=∠DEB,所以∠B=∠ACH,所以它们所对的弧相等.
③由②知,不正确.
④由②可以证得△ECF∽△BED.
此题综合运用了等角的余角相等,圆周角定理等.以及利用圆周角定理的结论证明相似等.
综合题.
找相似题
如图,AB为⊙O的直径,点C、D在⊙O上,CE⊥AB,DF⊥AB,垂足分别为E,F,且弧AC与弧BD相等,问AE与BF相等吗?为什么?
如图,AB是⊙O的直径,E是⊙O上的一点,
BE
的度数为40°,过点O作OC∥BE交⊙O于点C,求∠BCO的度数.
如图,A、B、C都是⊙O上的点,
AC
=
BC
,CD⊥OA于D,CE⊥OB于E.求证:OD=OE.
如图,⊙O上三点A、B、C,AB=AC,∠ABC的平分线交⊙O于点E,∠ACB的平分线交⊙O于点F,BE和CF相交于点D,四边形AFDE是菱形吗?验证你的结论.
如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF的中点,AD⊥BC于点D,求证:AD=
1
2
BF.