试题
题目:
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )
A.AC+CB=AD+DB
B.AC+CB<AD+DB
C.AC+CB>AD+DB
D.AC+CB与AD+DB的大小关系不确定
答案
C
解:如图;
以C为圆心,AC为半径作圆,交BD的延长线于E,连接AE、CE;
∵CB=CE,
∴∠CBE=∠CEB;
∵∠DAC=∠CBE,
∴∠DAC=∠CEB;
∵AC=CE,
∴∠CAE=∠CEA,
∴∠CAE-∠DAC=∠CEA-∠CED,即∠DAE=∠DEA;
∴AD=DE;
∵EC+BC>BE,EC=AC,BE=BD+DE=AD+BD,
∴AC+BC>BD+AD;
故选C.
考点梳理
考点
分析
点评
专题
圆心角、弧、弦的关系.
欲求AC+CB和AD+DB的大小关系,需将这些线段构建到同一个三角形中,然后利用三角形的三边关系求解.
能够将与已知和所求相关的线段构建到同一个三角形中,是解答此题的关键.
压轴题.
找相似题
如图,AB为⊙O的直径,点C、D在⊙O上,CE⊥AB,DF⊥AB,垂足分别为E,F,且弧AC与弧BD相等,问AE与BF相等吗?为什么?
如图,AB是⊙O的直径,E是⊙O上的一点,
BE
的度数为40°,过点O作OC∥BE交⊙O于点C,求∠BCO的度数.
如图,A、B、C都是⊙O上的点,
AC
=
BC
,CD⊥OA于D,CE⊥OB于E.求证:OD=OE.
如图,⊙O上三点A、B、C,AB=AC,∠ABC的平分线交⊙O于点E,∠ACB的平分线交⊙O于点F,BE和CF相交于点D,四边形AFDE是菱形吗?验证你的结论.
如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF的中点,AD⊥BC于点D,求证:AD=
1
2
BF.