试题

题目:
青果学院如图,已知⊙O是四边形ABCD的外接圆,直线AD,BC相交于点E,F是弦CD的中点,直线EF交弦AB于点G,求证:
(1)ED·EA=EC·EB;
(2)AG:GB=AE2:BE2
答案
证明:
(1)∵四边形ABCD是⊙O的内接四边形
∴∠DCE=∠A,∠EDC=∠B
∴△EDC∽△EAB
ED
EB
=
EC
EA

故ED·EA=EC·EB;
(2)证明:∵△DEF的边DF和△CEF的边CF上的高相等,
∵CF=DF,
S△DEF
S△CEF
=1,
由正弦定理得:
S△DEF
S△CEF
=
1
2
DE·EFsin∠DEF
1
2
CE·EFsin∠CEF
=
DEsin∠DEF
CEsin∠CEF
=1
∵△EDC∽△EAB
DE
CE
=
EB
EA

EBsin∠DEF
EAsin∠CEF
=1,
sin∠DEF
sin∠CEF
=
EA
EB

∵△AEG边AG和△BEG边CG上的高相等,
S△AEG
S△BEG
=
AG
BG
=
1
2
AE·EGsin∠AEG
1
2
BE·EGsin∠BEG
=
AE
BE
·
sin∠DEF
sin∠CEF
=
AE
BE
×
AE
BE

AG
BG
=
AE2
BE2

证明:
(1)∵四边形ABCD是⊙O的内接四边形
∴∠DCE=∠A,∠EDC=∠B
∴△EDC∽△EAB
ED
EB
=
EC
EA

故ED·EA=EC·EB;
(2)证明:∵△DEF的边DF和△CEF的边CF上的高相等,
∵CF=DF,
S△DEF
S△CEF
=1,
由正弦定理得:
S△DEF
S△CEF
=
1
2
DE·EFsin∠DEF
1
2
CE·EFsin∠CEF
=
DEsin∠DEF
CEsin∠CEF
=1
∵△EDC∽△EAB
DE
CE
=
EB
EA

EBsin∠DEF
EAsin∠CEF
=1,
sin∠DEF
sin∠CEF
=
EA
EB

∵△AEG边AG和△BEG边CG上的高相等,
S△AEG
S△BEG
=
AG
BG
=
1
2
AE·EGsin∠AEG
1
2
BE·EGsin∠BEG
=
AE
BE
·
sin∠DEF
sin∠CEF
=
AE
BE
×
AE
BE

AG
BG
=
AE2
BE2
考点梳理
相似三角形的判定与性质;圆内接四边形的性质;平行线分线段成比例.
(1)由四边形ABCD是⊙O的内接四边形,据此性质证△EDC∽△EAB,从而得证;
(2)根据三角形面积公式和CF=DF求出,
S△DEF
S△CEF
=1,由正弦定理推出
S△DEF
S△CEF
=1根据△EDC∽△EAB求出
sin∠DEF
sin∠CEF
=
EA
EB
,根据三角形面积公式求出
S△AEG
S△BEG
=
AG
BG
=
AE
BE
·
sin∠DEF
sin∠CEF
,代入求出即可.
此题考查的知识点是相似三角形的判定与性质,解答此题的关键是运用好圆内接四边形的性质和三角形的面积公式.
证明题.
找相似题