相似三角形的判定与性质;圆内接四边形的性质.
(1)根据两直线平行,内错角相等,以及三角形中等边对等角,用等量代换得到∠ACB=∠ACE,再用相等的圆周角所对的弧相等,所对的先相等求出AB的长.(2)根据等腰三角形的性质得到DE是△PBC的中位线,求出BC的长,再用勾股定理和相似三角形对应边的比进行计算求出EG的长.
本题考查的是相似三角形的判定与性质,(1)根据平行线和圆周角的性质,得到AB=AD,求出AB的长.(2)先用等腰三角形的性质得到AB=AP,然后由AE∥BC,得到相似三角形,根据相似三角形的性质,利用勾股定理计算求出EG的长.