圆内接四边形的性质;垂径定理;圆周角定理;解直角三角形.
(1)连接OA、OB,作OE⊥AB,E为垂足,要求∠ACB的度数,根据圆内接四边形的性质只需求得∠ADB的度数,
再根据圆周角定理只需求得圆心角∠AOB的度数,根据等腰三角形的三线合一,只需求得∠AOE的度数,
根据垂径定理求得AE的长,根据锐角三角函数即可由边之间的关系求得∠AOE的度数,进一步求得∠AOB的度数;
(2)要求△ABD的最大面积,由于AB是个定值,只需使AB边上的高最大,即点D是优弧AB的中点,即作DF⊥AB,当DF经过圆心O时,DF取最大值.根据半径和AB的弦心距即可求得.
(1)中,主要是能够把已知的线段构造到一个直角三角形中,也可以作直径AM,根据锐角三角函数的知识求得角的度数,再进一步根据圆周角定理和圆内接四边形的性质进行计算;
(2)中,能够分析出面积最大值时,点D的位置.
几何综合题.