试题
题目:
如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C,D分别在两圆上,若∠ADB=120°,则sin∠ACB的值为( )
A.
3
2
B.
1
2
C.
3
3
D.
2
2
答案
B
解:连接OA,OB,
∵∠ADB=120°,
∴∠AOB=180°-∠ADB=60°,
∴∠ACB=
1
2
∠AOB=30°,
∴sin∠ACB=
1
2
.
故选B.
考点梳理
考点
分析
点评
专题
圆周角定理;圆内接四边形的性质;特殊角的三角函数值.
首先连接OA,OB,由圆的内接四边形的性质,可求得∠AOB的度数,又由圆周角定理可求得∠ACB的度数,继而求得答案.
此题考查了圆的内接四边形的性质、圆周角定理以及特殊角的三角函数问题.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.
压轴题.
找相似题
(2013·德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:⊙O半径为
5
2
,tan∠ABC=
3
4
,则CQ的最大值是( )
(2010·台湾)如图1,平行四边形纸片ABCD的面积为120,AD=20,AB=18.今沿两对角线将四边形ABCD剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一线对称图形戊,如图2所示,则图形戊的两对角线长度和( )
(2009·台湾)如图,圆上有A,B,C,D四点,其中∠BAD=80度.若
ABC
,
ADC
的长度分别为7p,11p,则
BAD
的长度为何( )
(2006·宁德)如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD为( )
(2005·泸州)如图,四边形ABCD为⊙O的内接四边形,∠BOD=120°,则∠BCD为( )