试题
题目:
已知ABCD是一个半径为R的圆的内接四边形,AB=12,CD=6,分别延长AB和DC,它们相交于P且BP=8,∠APD=60°,则R等于( )
A.10
B.2
21
C.12
2
D.14
答案
B
解:由切割线定理得PB·PA=PC·PD,
有 8×20=PC(PC+6).
解得PC=10.
如图,连接AC.
在△PAC中,由PA=2PC,∠APC=60°,得∠PCA=90°.
从而AD是圆的直径.由勾股定理,得
AD
2
=AC
2
+CD
2
=(PA
2
-PC
2
)+CD
2
=20
2
-10
2
+6
2
=336.
∴AD=
336
=4
21
∴R=
1
2
AD=2
21
.
故选B.
考点梳理
考点
分析
点评
专题
圆内接四边形的性质;特殊角的三角函数值.
首先根据切割线定理即可计算出PC的长度是10,则PC=
1
2
AP,以及,∠APD=60°,可以证明∠PCA=90°,在直角△ACD中根据勾股定理即可求得直径AD的长,从而求得半径的长.
本题主要考查了切割线定理,正确判定△ACD是直角三角形是解题的关键.
计算题.
找相似题
(2013·德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:⊙O半径为
5
2
,tan∠ABC=
3
4
,则CQ的最大值是( )
(2010·台湾)如图1,平行四边形纸片ABCD的面积为120,AD=20,AB=18.今沿两对角线将四边形ABCD剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一线对称图形戊,如图2所示,则图形戊的两对角线长度和( )
(2009·台湾)如图,圆上有A,B,C,D四点,其中∠BAD=80度.若
ABC
,
ADC
的长度分别为7p,11p,则
BAD
的长度为何( )
(2006·宁德)如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD为( )
(2005·泸州)如图,四边形ABCD为⊙O的内接四边形,∠BOD=120°,则∠BCD为( )