试题
题目:
如图,A、B两点在一座小山的两侧,现有皮尺足够长和足够用的木杆,请你用学过的几何知识设计一种方法,求出A、B两点之间的距离.(简要说明设计方法和理由)
答案
解:在小山旁边取一点O,使点O能直接达到A、B两点,连接AO并延长到C,使AO=OC,连接BO并延长到D,使BO=OD,则AB=CD.
理由:
∵AO=OC,∠AOB=∠COD,BO=OD,
∴△AOB≌△COD(SAS).
∴AB=CD.
解:在小山旁边取一点O,使点O能直接达到A、B两点,连接AO并延长到C,使AO=OC,连接BO并延长到D,使BO=OD,则AB=CD.
理由:
∵AO=OC,∠AOB=∠COD,BO=OD,
∴△AOB≌△COD(SAS).
∴AB=CD.
考点梳理
考点
分析
点评
专题
全等三角形的应用.
本题让我们了解测量两点之间距离的一种方法,只要符合全等三角形全等的条件,方案具有操作性,需要测量的线段在平地一侧即可实施.
本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.
操作型.
找相似题
王老师一块教学用的三角形玻璃不小心打破了,他想再到玻璃店划一块同样大小的三角形玻璃,为了方便他只要带哪一块就可以( )
小明不慎将三角形模具打碎为四块,若他只带其中一块到商店去,就能还配一块与原来一模一样的三角形模具,应带( )块去合适.
长为3cm,4cm,6cm,8cm的木条各两根,小明与小刚分别取了3cm和4cm的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为( )
如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )
小明不慎将一块三角形的玻璃摔碎成如右图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )