试题
题目:
已知:如图,在△ABC中,∠ACB=90°,∠B=25°,以点C为圆心、AC为半径作⊙C,交AB于点D,求
AD
的度数.
答案
解:解法一:(用垂径定理求)
如图,过点C作CE⊥AB于点E,交
AD
于点F,
∴
DF
=
AF
,
又∵∠ACB=90°,∠B=25°,
∴∠FCA=25°,
∴
AF
的度数为25°,
∴
AD
的度数为50°;
解法二:(用圆周角求)如图,延长AC交⊙C于点E,连接ED,
∵AE是直径,
∴∠ADE=90°,
∵∠ACB=90°,∠B=25°,
∴∠E=∠B=25°,
∴
AD
的度数为50°;
解法三:(用圆心角求)如图,连接CD,
∵∠ACB=90°,∠B=25°,
∴∠A=65°,
∵CA=CD,
∴∠ADC=∠A=65°,
∴∠ACD=50°,
∴
AD
的度数为50°.
解:解法一:(用垂径定理求)
如图,过点C作CE⊥AB于点E,交
AD
于点F,
∴
DF
=
AF
,
又∵∠ACB=90°,∠B=25°,
∴∠FCA=25°,
∴
AF
的度数为25°,
∴
AD
的度数为50°;
解法二:(用圆周角求)如图,延长AC交⊙C于点E,连接ED,
∵AE是直径,
∴∠ADE=90°,
∵∠ACB=90°,∠B=25°,
∴∠E=∠B=25°,
∴
AD
的度数为50°;
解法三:(用圆心角求)如图,连接CD,
∵∠ACB=90°,∠B=25°,
∴∠A=65°,
∵CA=CD,
∴∠ADC=∠A=65°,
∴∠ACD=50°,
∴
AD
的度数为50°.
考点梳理
考点
分析
点评
圆心角、弧、弦的关系;垂径定理.
因为弧与垂径定理有关;与圆心角、圆周角有关;与弦、弦心距有关;弧与弧之间还存在着和、差、倍、半的关系,因此这道题有很多解法,仅选几种供参考.
本题可以利用:1、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧.2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
找相似题
如图,AB为⊙O的直径,点C、D在⊙O上,CE⊥AB,DF⊥AB,垂足分别为E,F,且弧AC与弧BD相等,问AE与BF相等吗?为什么?
如图,AB是⊙O的直径,E是⊙O上的一点,
BE
的度数为40°,过点O作OC∥BE交⊙O于点C,求∠BCO的度数.
如图,A、B、C都是⊙O上的点,
AC
=
BC
,CD⊥OA于D,CE⊥OB于E.求证:OD=OE.
如图,⊙O上三点A、B、C,AB=AC,∠ABC的平分线交⊙O于点E,∠ACB的平分线交⊙O于点F,BE和CF相交于点D,四边形AFDE是菱形吗?验证你的结论.
如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF的中点,AD⊥BC于点D,求证:AD=
1
2
BF.