试题
题目:
(2012·平谷区二模)如图,BE⊥CE于E,AD⊥ED于D,∠ACB=90°,AC=BC.
求证:AD=CE.
答案
证明:∵BE⊥CE,AD⊥ED,
∴∠E=∠D=90°,
∵∠ACB=90°,
∴∠BCE+∠ACD=90°,
∵∠B+∠BCE=90°,
∴∠B=∠ACD,
在△BEC和△CDA中,
∠E=∠D
∠B=∠ACD
BC=AC
,
∴△BCE≌△CAD(AAS),
∴AD=CE.
证明:∵BE⊥CE,AD⊥ED,
∴∠E=∠D=90°,
∵∠ACB=90°,
∴∠BCE+∠ACD=90°,
∵∠B+∠BCE=90°,
∴∠B=∠ACD,
在△BEC和△CDA中,
∠E=∠D
∠B=∠ACD
BC=AC
,
∴△BCE≌△CAD(AAS),
∴AD=CE.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
根据垂直的定义可得∠E=∠D=90°,然后根据同角的余角相等求出∠B=∠ACD,再利用“角角边”证明△BCE和△CAD全等,根据全等三角形对应边相等即可得证.
本题考查了全等三角形的判定与性质,根据同角的余角相等求出∠B=∠ACD是证明三角形全等的关键.
证明题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.