试题
题目:
(2012·五通桥区模拟)如图,点C、D 在线段AB上,E、F在AB同侧,DE与CF相交于点O,且AC=BD,CO=DO,∠A=∠B.
求证:AE=BF.
答案
证明:在△COD中,
∵CO=DO,
∴∠ODC=∠OCD,
∵AC=BD,
∴AC+CD=BD+CD
即,AD=BC,
在△ADE和△BCF中,
∵
∠A=∠B
AD=BC
∠EDA=∠FCB
∴△ADE≌△BCF,
∴AE=BF.
证明:在△COD中,
∵CO=DO,
∴∠ODC=∠OCD,
∵AC=BD,
∴AC+CD=BD+CD
即,AD=BC,
在△ADE和△BCF中,
∵
∠A=∠B
AD=BC
∠EDA=∠FCB
∴△ADE≌△BCF,
∴AE=BF.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
由已知,要证AE=BF,就得证△ADE≌△BCF,由CO=DO,可得∠ODC=∠OCD,再由AC=BD,可得AD=BC,又已知∠A=∠B,所以△ADE≌△BCF,故AE=BF.
此题考查的知识点是全等三角形的判定和性质,解题的关键是证明△ADE≌△BCF.
证明题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.