试题
题目:
如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A=∠A′,④∠A′CA=∠B′CB中.请用其中三个作为条件,余下一个作为结论,编一道可解的数学问题,并写出解答过程.
答案
解:选择②③④,证明①成立.
∵∠A′CA=∠B′CB,
∴∠A′CA+∠ACB′=∠B′CB+∠ACB′,
∴∠BCA=∠B′CA′.
在△ABC和△A′B′C中,
∠A=∠A′
AC=A′C
∠ACB=∠ACB′
,
∴△ABC≌△A′B′C(ASA),
∴BC=B′C.
解:选择②③④,证明①成立.
∵∠A′CA=∠B′CB,
∴∠A′CA+∠ACB′=∠B′CB+∠ACB′,
∴∠BCA=∠B′CA′.
在△ABC和△A′B′C中,
∠A=∠A′
AC=A′C
∠ACB=∠ACB′
,
∴△ABC≌△A′B′C(ASA),
∴BC=B′C.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
根据全等三角形的判定方法,可选择两角一边,证明△ABC≌△A′B′C,可用ASA或AAS.
本题是一道开放题,考查了全等三角形的判定方法:SSS、SAS、AAS、ASA,对于直角三角形还有HL.
开放型.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.