试题
题目:
(2006·重庆)如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.
求证:(1)△AEF≌△BCD;(2)EF∥CD.
答案
证明:(1)∵AE∥BC,
∴∠A=∠B.
又AD=BF,
∴AF=AD+DF=BF+FD=BD.
又AE=BC,
∴△AEF≌△BCD.
(2)∵△AEF≌△BCD,
∴∠EFA=∠CDB.
∴EF∥CD.
证明:(1)∵AE∥BC,
∴∠A=∠B.
又AD=BF,
∴AF=AD+DF=BF+FD=BD.
又AE=BC,
∴△AEF≌△BCD.
(2)∵△AEF≌△BCD,
∴∠EFA=∠CDB.
∴EF∥CD.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;平行线的判定.
要证△AEF≌△BCD,由已知得AE∥BC,所以∠A=∠B.又因AD=BF,所以AF=AD+DF=BF+FD=BD,又因AE=BC,所以△AEF≌△BCD.再根据全等即可求出EF∥CD.
本题考查全等三角形和平行线的判定及推理论证能力,已知中有平行线能为证全等提供角相等的条件,而全等又能得到角相等从而为平行线的证明提供了条件.
证明题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.