试题
题目:
(2007·南京)两组邻边分别相等的四边形我们称它为筝形.
如图,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,
(1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;
(2)如果AC=6,BD=4,求筝形ABCD的面积.
答案
(1)证明:①在△ABC和△ADC中,
AB=AD,BC=DC,AC=AC,
∴△ABC≌△ADC.
②∵△ABC≌△ADC,
∴∠BAO=∠DAO.
∵AB=AD,OA=OA,
∴△ABO≌△ADO.
∴OB=OD,AC⊥BD.
(2)解:筝形ABCD的面积=△ABC的面积+△ACD的面积
=
1
2
×AC×BO+
1
2
×AC×DO,
=
1
2
×AC×(BO+DO),
=
1
2
×AC×BD,
=
1
2
×6×4,
=12.
(1)证明:①在△ABC和△ADC中,
AB=AD,BC=DC,AC=AC,
∴△ABC≌△ADC.
②∵△ABC≌△ADC,
∴∠BAO=∠DAO.
∵AB=AD,OA=OA,
∴△ABO≌△ADO.
∴OB=OD,AC⊥BD.
(2)解:筝形ABCD的面积=△ABC的面积+△ACD的面积
=
1
2
×AC×BO+
1
2
×AC×DO,
=
1
2
×AC×(BO+DO),
=
1
2
×AC×BD,
=
1
2
×6×4,
=12.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
分别利用SSS,SAS求证△ABC≌△ADC,△ABO≌△ADO,从而得出OB=OD,AC⊥BD,筝形的面积公式可用△ABC的面积与△ACD的面积和求得.
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.求出AC⊥BD是正确解决本题的关键.
几何综合题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.