试题
题目:
如图,在△ABC中,AD平分∠BAC,在AB上截取AE=AC,连接DE,已知DE=2cm,BD=3cm;
(1)试说明△AED≌△ACD;
(2)求线段BC的长.
答案
(1)证明:∵AD平分∠BAC,
∴∠BAD=∠CAD;
在△ADE和△ADC中,
∵AE=AC,∠EAD=∠CAD,
∴AD=AD(公共边),
∴△ADE≌△ADC(SAS);
(2)解:由(1)知,△ADE≌△ADC,
∴DE=DC(全等三角形的对应边相等),
∴BC=BD+DC=BD+DE=2+3=5(cm).
(1)证明:∵AD平分∠BAC,
∴∠BAD=∠CAD;
在△ADE和△ADC中,
∵AE=AC,∠EAD=∠CAD,
∴AD=AD(公共边),
∴△ADE≌△ADC(SAS);
(2)解:由(1)知,△ADE≌△ADC,
∴DE=DC(全等三角形的对应边相等),
∴BC=BD+DC=BD+DE=2+3=5(cm).
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
(1)根据角平分线的意义知∠BAD=∠CAD,又因为AE=AC,AD=AD,所以根据三角形的判定定理SAS易证得△AED≌△ACD;
(2)利用(1)的结果,根据全等三角形的性质:对应边相等,知CD=DE,而BC=BD+DC,可求BC的长.
本题考查全等三角形的判定与性质.解答此题时,充分利用了角平分线的意义.
证明题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.