试题
题目:
已知:如图,AB=AC,AD⊥BC,垂足是F,P是AD上任意的一点,求证:PB=PC.
答案
证明:∵AD⊥BC,
∴∠AFB=∠AFC=90°,
又∵AB=AC,AF=AF,
∴Rt△ABF≌Rt△ACF,
∴∠BAP=∠CAP,
又∵AB=AC,AP=AP,
∴△ABP≌△ACP,
∴PB=PC.
证明:∵AD⊥BC,
∴∠AFB=∠AFC=90°,
又∵AB=AC,AF=AF,
∴Rt△ABF≌Rt△ACF,
∴∠BAP=∠CAP,
又∵AB=AC,AP=AP,
∴△ABP≌△ACP,
∴PB=PC.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
先利用AB=AC,AF=AF,利用HL可证Rt△ABF≌Rt△ACF,那么就有∠BAP=∠CAP,在△ABP和△ACP中,利用
AB=AC,∠BAP=∠CAP,AP=AP,利用SAS可证△ABP≌△ACP,于是就有PB=PC.
本题考查了全等三角形的判定和性质,要根据已知条件在图形上的位置选择判定全等的方法.
证明题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.