试题
题目:
如图,AB=CD,AE⊥BC于E,DF⊥BC于F,CE=BF,连接AD交EF于点O,猜想O为哪些线段的中点?请选择其中一种结论证明.
答案
解:点O为AD、EF、BC的中点.
证明:连接AF,DE,
∵CE=BF,
∴CE+EF=BF+EF,
∴CF=BE.
在△AEB和△DFC中,
BE=CF,
∠AEB=∠CFD=90°,
AB=CD,
∴△AEB≌△CFD(SAS),
∴AE=DF.
∵AE⊥BC,DF⊥BC,
∴AE∥DF,
∴四边形AEDF为平行四边形.
∴点O为AD、EF的中点.
又∵CE=BF,
∴BO=CO,
∴点O为BC的中点.
故点O为AD、EF、BC的中点.
解:点O为AD、EF、BC的中点.
证明:连接AF,DE,
∵CE=BF,
∴CE+EF=BF+EF,
∴CF=BE.
在△AEB和△DFC中,
BE=CF,
∠AEB=∠CFD=90°,
AB=CD,
∴△AEB≌△CFD(SAS),
∴AE=DF.
∵AE⊥BC,DF⊥BC,
∴AE∥DF,
∴四边形AEDF为平行四边形.
∴点O为AD、EF的中点.
又∵CE=BF,
∴BO=CO,
∴点O为BC的中点.
故点O为AD、EF、BC的中点.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
由于AE⊥BC于E,DF⊥BC于F,则△AEB和△DFC是直角三角形,根据HL即可证明△AEB≌△CFD,再根据一组对边平行且相等的四边形是平行四边形可证四边形ARDF为平行四边形.由平行四边形的性质可得点O为AD、EF、BC的中点.
本题考查了直角三角形全等的判定和性质,平行四边形的判定和性质,综合性较强,但难度不大.
证明题;开放型.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.