试题

题目:
△ABC中,AC=4,中线AD=6,则AB边的取值范围是
8<AB<16
8<AB<16

答案
8<AB<16

青果学院解:延长AD到E,使DE=AD,连接BE.
在△ADC和△EDB中,
AD=DE
∠ADC=∠BDE(对顶角相等)
CD=BD(AD是BC的中线)

∴△ADC≌△EDB(SAS);
∴AC=BE(全等三角形的对应边相等);
∵AC=4,AD=6
∴BE=4,AE=12;
在△ABE中,AE-BE<AB<AE+BE,
∴AB边的取值范围是:8<AB<16.
故答案是:8<AB<16.
考点梳理
全等三角形的判定与性质;三角形三边关系.
作辅助线(延长AD到E,使DE=AD,连接BE)构建全等三角形△ADC≌△EDB(SAS);然后由全等三角形的对应边相等推知AC=BE;最后在△ABE中根据三角形的三边关系求AB边的取值范围.
本题考查了全等三角形的判定与性质、三角形的三边关系.解答此类题目时,将所求三角形的边长置于已知两边边长的三角形中,从而根据“两边之和大于第三边,两边之差小于第三边”来求该线段的取值范围.
推理填空题.
找相似题