试题
题目:
△ABC中,AC=4,中线AD=6,则AB边的取值范围是
8<AB<16
8<AB<16
.
答案
8<AB<16
解:延长AD到E,使DE=AD,连接BE.
在△ADC和△EDB中,
AD=DE
∠ADC=∠BDE(对顶角相等)
CD=BD(AD是BC的中线)
,
∴△ADC≌△EDB(SAS);
∴AC=BE(全等三角形的对应边相等);
∵AC=4,AD=6
∴BE=4,AE=12;
在△ABE中,AE-BE<AB<AE+BE,
∴AB边的取值范围是:8<AB<16.
故答案是:8<AB<16.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;三角形三边关系.
作辅助线(延长AD到E,使DE=AD,连接BE)构建全等三角形△ADC≌△EDB(SAS);然后由全等三角形的对应边相等推知AC=BE;最后在△ABE中根据三角形的三边关系求AB边的取值范围.
本题考查了全等三角形的判定与性质、三角形的三边关系.解答此类题目时,将所求三角形的边长置于已知两边边长的三角形中,从而根据“两边之和大于第三边,两边之差小于第三边”来求该线段的取值范围.
推理填空题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.