试题
题目:
如图,已知△ABC和△AEF中,AB=AC,AE=AF,∠CAB=∠EAF,BE交FC于D点.
(1)当∠CAB=90゜时,求证:BE=CF,BE⊥CF;
(2)当∠CAB=60゜时,求∠BOC的度数;
(3)当∠CAB=α时(0゜<α<90゜),直接写出∠BOC的度数为
α
α
(用含及的式子表示).
答案
α
(1)证明:∵∠CAB=∠EAF,
∴∠CAB+∠CAE=∠EAF+∠CAE,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
BA=AC
∠BAE=∠CAF
AE=AF
,
∴△BAE≌△CAF(SAS),
∴BE=CF,∠EBA=∠ACF,
∵∠CAB=90°,
∴∠EBA+∠BQA=90°,
∵∠BQA=∠CQE,
∴∠ACF+∠CQE=90°,
∴∠COQ=180°-90°=90°,
∴BE⊥CF.
(2)解:∵∠CAB=60°,
∴∠EBA+∠BQA=180°-60°=120°,
∵∠BQA=∠CQE,∠ACF=∠ABE,
∴∠ACF+∠CQE=120°,
∴∠COQ=180°-120°=60°,
(3)解:∵∠CAB=α,
∴∠EBA+∠BQA=180°-α,
∵∠BQA=∠CQE,∠ACF=∠ABE,
∴∠ACF+∠CQE=180°-α,
∴∠COQ=180°-(180°-α)=α.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
(1)求出∠BAE=∠CAF,根据SAS推出△BAE≌△CAF,推出BE=CF,∠ABE=∠ACF,根据三角形内角和定理推出∠COQ=90°即可;
(2)求出∠EBA+∠BQA=120°,求出∠ACF+∠CQO=120°,即可得出答案;
(3)求出∠EBA+∠BQA=180°-α,求出∠ACF+∠CQO=180°-α,即可得出答案.
本题考查了全等三角形的性质和判定和三角形内角和定理的应用,注意:全等三角形的对应边相等,对应角相等.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.