试题
题目:
如图,AD是△ABC的中线,点E在BC的延长线上,CE=AB,∠BAC=∠BCA,
求证:AE=2AD.
答案
证明:延长AD至M,使DM=AD,
∵AD是△ABC的中线,
∴DB=CD,
在△ABD和△MDC中
BD=CD
∠ADB=∠MDC
AD=DM
,
∴△ABD≌△MCD(SAS),
∴MC=AB,∠B=∠MCD,
∵AB=CE,
∴CM=CE,
∵∠BAC=∠BCA,
∴∠B+∠BAC=∠ACB+∠MCD,
即∠ACM=∠ACE,
在△ACE和△ACM中
AC=AC
∠ACE=∠ACM
CM=CE
,
∴△ACM≌△ACE(SAS).
∴AE=AM,
∵AM=2AD,
∴AE=2AD.
证明:延长AD至M,使DM=AD,
∵AD是△ABC的中线,
∴DB=CD,
在△ABD和△MDC中
BD=CD
∠ADB=∠MDC
AD=DM
,
∴△ABD≌△MCD(SAS),
∴MC=AB,∠B=∠MCD,
∵AB=CE,
∴CM=CE,
∵∠BAC=∠BCA,
∴∠B+∠BAC=∠ACB+∠MCD,
即∠ACM=∠ACE,
在△ACE和△ACM中
AC=AC
∠ACE=∠ACM
CM=CE
,
∴△ACM≌△ACE(SAS).
∴AE=AM,
∵AM=2AD,
∴AE=2AD.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
首先延长AD至M,使DM=AD,先证明△ABD≌△MCD,进而得出MC=AB,∠B=∠MCD,即可得出∠ACM=∠ACE,再证明△ACM≌△ACE,即可得出答案.
此题主要考查了全等三角形的判定与性质,利用倍长中线得出辅助线是解题关键.
证明题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.