试题
题目:
如图,△ABC中,D为BC的中点.
(1)求证:AB+AC>2AD;
(2)若AB=5,AC=3,求AD的取值范围.
答案
(1)证明:由BD=CD,再延长AD至E,使DE=AD,
∵D为BC的中点,
∴DB=CD,
在△ADC和△EDB中
AD=DE
∠ADC=∠BDE
DB=CD
,
∴△ADC≌△EDB(SAS),
∴BE=AC,
在△ABE中,∵AB+BE>AE,
∴AB+AC>2AD;
(2)∵AB=5,AC=3,
∴5-3<2AD<5+3,
∴1<AD<4.
(1)证明:由BD=CD,再延长AD至E,使DE=AD,
∵D为BC的中点,
∴DB=CD,
在△ADC和△EDB中
AD=DE
∠ADC=∠BDE
DB=CD
,
∴△ADC≌△EDB(SAS),
∴BE=AC,
在△ABE中,∵AB+BE>AE,
∴AB+AC>2AD;
(2)∵AB=5,AC=3,
∴5-3<2AD<5+3,
∴1<AD<4.
考点梳理
考点
分析
点评
全等三角形的判定与性质;三角形三边关系.
(1)再延长AD至E,使DE=AD,构造△ADC≌△EDB,再根据三角形的三边关系可得AB+AC>2AD;
(2)直接利用三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三边可得5-3<2AD<5+3,再计算即可.
此题主要全等三角形的判定与性质,关键是正确作出辅助线,延长中线,是一种常见的辅助线.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.