试题
题目:
如图,点P为△AEF外一点,PA平分∠EAF,PD⊥EF于D,且DE=DF,PB⊥AE于B.
求证:AF-AB=BE.
答案
证明:如图,过点P作PM⊥AF于M,连接PE、PF,
∵PA平分∠EAF,PB⊥AE,
∴PB=PM,AM=AB,
∵PD⊥EF,DE=DF,
∴PD垂直平分EF,
∴PE=PF,
在Rt△PBE和Rt△PMF,
PE=PF
PB=PM
,
∴Rt△PBE≌Rt△PMF(HL),
∴MF=BE,
∵AF-AM=MF,
∴AF-AB=BE.
证明:如图,过点P作PM⊥AF于M,连接PE、PF,
∵PA平分∠EAF,PB⊥AE,
∴PB=PM,AM=AB,
∵PD⊥EF,DE=DF,
∴PD垂直平分EF,
∴PE=PF,
在Rt△PBE和Rt△PMF,
PE=PF
PB=PM
,
∴Rt△PBE≌Rt△PMF(HL),
∴MF=BE,
∵AF-AM=MF,
∴AF-AB=BE.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
过点P作PM⊥AF于M,连接PE、PF,根据角平分线上的点到角的两边的距离相等可得PB=PM,根据线段垂直平分线上的点到线段两端点的距离相等可得PE=PF,然后利用“HL”证明Rt△PBE和Rt△PMF全等,根据全等三角形对应边相等可得MF=BE,再根据AF-AM=MF整理即可得证.
本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质并作辅助线构造出全等三角形是解题的关键.
证明题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.