试题
题目:
如图,在△ABC中,∠ACB=90°,AC=BC,AD⊥CD,BE⊥CD,AD=3,DE=4,则BE=
7
7
.
答案
7
解:∵在△ABC中,∠ACB=90°,BE⊥CD,
∴∠ACD+∠BCD=90°,∠BCD+∠CBE=90°,
∴∠ACD=∠CBE(等量代换);
∴在△ACD和△CBE中,
AC=BC,
∠ADC=∠BEC=90°,
∠ACD=∠CBE,
∴△ACD≌△CBE(ASA),
∴CE=AD=3(全等三角形的对应边相等),
∴BE=CD=CE+ED=3+4=7;
故答案是:7.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
根据垂直的定义与直角三角形的两个锐角互余的性质可以推知△ACD≌△CBE(ASA);最后根据全等三角形的对应边相等知CE=AD=3,由BE=CD=CE+ED求解.
本题考查了全等三角形的判定与性质.解答该题时,围绕结论寻找全等三角形,运用全等三角形的性质判定对应线段相等.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.