试题
题目:
如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足.则结论:①AD=BF;②AC+CD=AB;③BE=CF; ④BF=2BE,
其中正确的结论是
①②④
①②④
(填序号)
答案
①②④
解:∵AD平分∠BAC,
∴∠BAE=∠FAE.
∵BE⊥AD,
∴∠AEB=∠AEF=90°.
∴∠F+∠FBC=90°,∠F+∠FAE=90°,
∴∠FBC=∠FAE.
∵∠ACB=90°,
∴∠BCF=∠ACB=∠AEF=90°.
在△ACD和△BCF中
∠ACD=∠BCF
AC=BC
∠FAE=∠FBC
,
∴△ACD≌△BCF(ASA),
∴AD=BF,CD=CF.
在△AEB和△AEF中
∠BAE=∠FAE
AE=AE
∠AEB=∠AEF
,
∴△AEB≌△AEF(ASA),
∴AB=AF,BE=EF.
∴BF=2BE.
∵CD≠EF,
∴CF≠BE,
∵AC+CF=AF,
∴AC+CD=AF,
∴AC+CD=AB.
∴正确的有:①②④.
故答案为:①②④.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
根据条件可以得出△ACD≌△BCF就可以得出AD=BF,CF=CD,由CD≠EF而得出BE=CF不一定成立,再由△AEB≌△AEF就可以得出AB=AF,BE=EF就可以得出AC+CD=AB,BF=2BE,从而得出结论.
本题考查了角平分线的性质的运用,垂直的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.