试题
题目:
△ABC中,AC=5,AB=7,则中线AD的取值范围是( )
A.2<AD<12
B.4<AD<24
C.5<AD<19
D.1<AD<6
答案
D
解:延长AD至点E,使DE=AD,连接EC,
在△ABD与△ECD中,
∵
BD=CD
∠ADB=∠EDC
DE=AD
,
∴△ABD≌△ECD(SAS),
∴CE=AB,
∵AB=7,AC=5,CE=7,
设AD=x,则AE=2x,
∴2<2x<12,
∴1<x<6,
∴1<AD<6.
故选D.
考点梳理
考点
分析
点评
三角形三边关系;全等三角形的判定与性质.
先作辅助线,延长AD至点E,使DE=AD,连接EC,先证明△ABD≌△ECD,在△AEC中,由三角形的三边关系定理得出答案.
此题主要考查学生对三角形三边关系及中线的性质等的理解及运用能力.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.