试题
题目:
如图,EA⊥AB,BC⊥AB EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC(2)DE⊥AC(3)∠CAB=30°(4)∠EAF=∠ADE,其中结论正确的是( )
A.(1),(3)
B.(2),(3)
C.(3),(4)
D.(1),(2),(4)
答案
D
解:∵EA⊥AB,BC⊥AB,∴∠EAB=∠ABC=90°
Rt△EAD与Rt△ABC
∵D为AB中点,∴AB=2AD
又EA=AB=2BC
∴AD=BC
∴Rt△EAD≌Rt△ABC
∴DE=AC,∠C=∠ADE,∠E=∠FAD
又∠EAF+∠DAF=90°∴∠EAF+∠E=90°
∴∠EFA=180°-90°=90°,即DE⊥AC,
∠EAF+∠DAF=90°,∠C+∠DAF=90°
∴∠C=∠EAF,∠C=∠ADE
∴∠EAF=∠ADE
故选D.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
本题条件较为充分,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点可得两直角三角形全等,然后利用三角形的性质问题可解决.做题时,要结合已知条件与全等的判定方法对选项逐一验证.
本题考查了全等三角形的判定与性质;全等三角形问题要认真观察已知与图形,仔细寻找全等条件证出全等,再利用全等的性质解决问题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.