试题
题目:
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
A.h
1
>h
2
B.h
1
<h
2
C.h
1
=h
2
D.无法确定
答案
C
解:过点A作AM⊥BC交BC于点M,过点F作FN⊥DE交DE的延长线于点N,则有AM=h
1
,FN=h
2
;
在△AMC和△FNE中,
∵AM⊥BC,FN⊥DE,
∴∠AMC=∠FNE;
∵∠FED=115°,
∴∠FEN=65°=∠ACB;
∵又AC=FE,
∴△AMC≌△FNE;
∴AM=FN,
∴h
1
=h
2
.
故选C.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
本题可通过构建全等三角形进行求解.过点A作AM⊥BC交BC于点M,过点F作FN⊥DE交DE的延长线于点N,则有AM=h
1
,FN=h
2
;因此只要证明△AMC≌△FNE,即可得出h
1
=h
2
.
本题主要考查了全等三角形的判定几性质;做题中通过作辅助线构造了全等三角形是解决本题的关键,也是一种很重要的方法,要注意学习、掌握.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.