试题
题目:
如图,五角星ABCDE的五个内角之和∠A+∠B+∠C+∠D+∠E=
180
180
度.
答案
180
解:如图,∵∠1=∠A+∠C,∠2=∠B+∠D,
∴∠1+∠2=∠A+∠C+∠B+∠D,
∵∠1+∠2+∠E=180°,
∴∠A+∠B+∠C+∠D+∠E=180°.
故答案为:180.
考点梳理
考点
分析
点评
专题
三角形的外角性质;三角形内角和定理.
根据三角形的一个外角等于与它不相邻的两个内角的和把五个角转化为一个三角形的内角的和,再根据三角形内角和定理解答.
本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,把五个角转化为一个三角形的三个内角的和是解题的关键.
转化思想.
找相似题
(2013·湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
如图,∠ACD是△ABC的外角,∠ACD=80°,∠B=30°,则∠A=( )
如图,已知∠B=30°,∠C=20°,∠1=120°,则∠A的度数是( )
如图,∠A、∠DOE和∠BEC的大小关系是( )
如图,∠B=50°,∠D=35°,∠CFD=65°,则∠A的度数为( )