试题
题目:
如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上
的B′点,AE是折痕.
(1)试判断B′E与DC的位置关系;
(2)如果∠C=130°,求∠AEB的度数.
答案
解:(1)由于AB′是AB的折叠后形成的,
∠AB′E=∠B=∠D=90°,
∴B′E∥DC;
(2)∵折叠,
∴△ABE≌△AB′E,
∴∠AEB′=∠AEB,即∠AEB=
1
2
∠BEB′,
∵B′E∥DC,∴∠BEB′=∠C=130°,
∴∠AEB=
1
2
∠BEB′=65°.
解:(1)由于AB′是AB的折叠后形成的,
∠AB′E=∠B=∠D=90°,
∴B′E∥DC;
(2)∵折叠,
∴△ABE≌△AB′E,
∴∠AEB′=∠AEB,即∠AEB=
1
2
∠BEB′,
∵B′E∥DC,∴∠BEB′=∠C=130°,
∴∠AEB=
1
2
∠BEB′=65°.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
(1)由于AB′是AB的折叠后形成的,所以∠AB′E=∠B=∠D=90°,∴B′E∥DC;
(2)利用平行线的性质和全等三角形求解.
本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B落在AD边上的B′点,则△ABE≌△AB′E,利用全等三角形的性质和平行线的性质及判定求解.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.