试题
题目:
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?
答案
解:AF⊥CD.理由如下:
连接AC、AD.
在△ABC和△AED中,
∵AB=AE,∠B=∠E,BC=ED,
∴△ABC≌△AED.(SAS)
∴AC=AD.
∴△ACD为等腰三角形.
∵F为CD的中点,
∴AF⊥CD.
解:AF⊥CD.理由如下:
连接AC、AD.
在△ABC和△AED中,
∵AB=AE,∠B=∠E,BC=ED,
∴△ABC≌△AED.(SAS)
∴AC=AD.
∴△ACD为等腰三角形.
∵F为CD的中点,
∴AF⊥CD.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
连接AC、AD.根据SAS证明△ABC≌△AED,得AC=AD.运用等腰三角形性质解答问题.
此题考查全等三角形的判定与性质及等腰三角形性质,关键在于把图形分割成三角形后解决问题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.