试题
题目:
已知:如图,BD、CE都是△ABC的高.F是BD上一点,G是CE延长线上一点,∠FAB=∠G.
(1)若∠FAD=∠FBC,试说明AG∥BC;
(2)若BF=AC,试探索线段AF和AG的关系,并说明理由.
答案
解:(1)设BD、CE交于O,
∵BD、CE是高,
∴∠BEO=∠CDO=90°,
∴∠BOE+∠EBO=∠COD+∠OCD=90°,
∵∠BOE=∠COD,
∴∠EBO=∠OCD,
∵∠EBO+∠FBC+∠ECB=90°,
∠FAD+∠BAF+∠OCD=90°,
∵∠FAD=∠FBC,
∴∠ECB=∠BAF,
∵∠BAF=∠G,
∴∠G=∠ECB,
∴AG∥BC;
(2)AF⊥AG,AF=AG.
∵在△BAF和△CGA中,
∠ABF=∠GCA
∠BAF=∠G
BF=AC
,
∴△BAF≌△CGA(AAS),
∴AF=AG,
在Rt△AGE中,
∵∠AEG=90°,
∴∠G+∠GAE=90°,
∵∠G=∠BAF,
∴∠GAE+∠BAF=90°,
即∠GAF=90°,
∴AG⊥AF.
解:(1)设BD、CE交于O,
∵BD、CE是高,
∴∠BEO=∠CDO=90°,
∴∠BOE+∠EBO=∠COD+∠OCD=90°,
∵∠BOE=∠COD,
∴∠EBO=∠OCD,
∵∠EBO+∠FBC+∠ECB=90°,
∠FAD+∠BAF+∠OCD=90°,
∵∠FAD=∠FBC,
∴∠ECB=∠BAF,
∵∠BAF=∠G,
∴∠G=∠ECB,
∴AG∥BC;
(2)AF⊥AG,AF=AG.
∵在△BAF和△CGA中,
∠ABF=∠GCA
∠BAF=∠G
BF=AC
,
∴△BAF≌△CGA(AAS),
∴AF=AG,
在Rt△AGE中,
∵∠AEG=90°,
∴∠G+∠GAE=90°,
∵∠G=∠BAF,
∴∠GAE+∠BAF=90°,
即∠GAF=90°,
∴AG⊥AF.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;平行线的判定.
(1)首先根据已知条件求证出关于直线AG,BC的内错角∠G=∠ECB,则满足AG∥BC的条件;
(2)根据平行线的性质和已知条件求证出△BAF≌△CGA,则得到AF=AG,然后通过等量代换求出∠GAF=90°所以AG⊥AF.
本题综合考查了平行线的性质,平行线的判定条件,全等三角形的判定条件,以及垂直定理;做题时要熟练应用这些知识.
探究型.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.