试题
题目:
如图,已知,BD与CE相交于点O,AD=AE,∠B=∠C,请解答下列问题:
(1)△ABD与△ACE全等吗?为什么?
(2)BO与CO相等吗?为什么?
答案
解:△ABD与△ACE全等,理由:
(1)在△ABD与△ACE中
∵∠A=∠A,∠B=∠C,AD=AE,
∴△ABD≌△ACE(AAS).
(2)BO与CO相等,理由:
∵△ABD≌△ACE,
∴AB=AC,
∵AE=AD,
∴AB-AE=AC-AD,
即BE=CD,
在△BOE与△COD中,
∵∠EOB=∠DOC,∠B=∠C,BE=CD,
∴△BOE≌△COD(AAS).
∴BO=CO.
解:△ABD与△ACE全等,理由:
(1)在△ABD与△ACE中
∵∠A=∠A,∠B=∠C,AD=AE,
∴△ABD≌△ACE(AAS).
(2)BO与CO相等,理由:
∵△ABD≌△ACE,
∴AB=AC,
∵AE=AD,
∴AB-AE=AC-AD,
即BE=CD,
在△BOE与△COD中,
∵∠EOB=∠DOC,∠B=∠C,BE=CD,
∴△BOE≌△COD(AAS).
∴BO=CO.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
(1)△ABD≌△ACE,因为已知的两个条件,再加上∠A=∠A,利用AAS可证全等;
(2)先利用(1)中,△ABD≌△ACE,可得AB=AC,而AD=AE,利用等量减等量差相等,可得BE=CD,再加上∠B=∠C,∠BOE=∠COD,利用AAS可证△BOE≌△COD,那么利用全等三角形的性质可得BO=CO.
本题考查了全等三角形的判定和性质;做题时利用了等量减等量差相等的知识,做题时注意结合图形选择做题方法.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.