试题
题目:
如图,已知AC⊥CB,DB⊥CB,AB=DC.求证:∠ABD=∠ACD.
答案
证明:∵AC⊥CB,DB⊥CB,
∴∠ACB=∠DBC=90°,
在△ACB和△DBC中,
AB=DC
BC=BC
,
∴△ACB≌△DBC(HL),
∴∠ABC=∠DCB,
又∵∠ACB=∠DBC,
∴∠ABD=∠ACD.
证明:∵AC⊥CB,DB⊥CB,
∴∠ACB=∠DBC=90°,
在△ACB和△DBC中,
AB=DC
BC=BC
,
∴△ACB≌△DBC(HL),
∴∠ABC=∠DCB,
又∵∠ACB=∠DBC,
∴∠ABD=∠ACD.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
根据AC⊥CB,DB⊥CB证明∠ACB=∠DBC=90°,然后证明△ACB和△DBC全等,再根据全等三角形对应角相等得到∠ABC=∠DCB,然后根据等角的余角相等即可得证.
本题考查了三角形全等的判定及性质;解题时主要利用全等三角形的判定和全等三角形对应角相等的性质,熟练掌握性质是解题的关键.
证明题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.