题目:
先填写完成第(1)小题中的空缺部分(数学表达式或理由),再按要求解答第(2)小题.
如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
(1)求证:AB=DC;

(2)请你连接AE、DF.问AE和DF相等吗?为什么?
证明:
(1)∵BE=CF(已知),
∴BE+EF=CF+EF(
等式的性质
等式的性质
),
即BF=CE.
在△ABF和△DCE中,
∴△ABF≌△DCE
(AAS)
(AAS)
,
∴AB=DC
(全等三角形的对应边相等)
(全等三角形的对应边相等)
.