试题
题目:
如图,已知 AD∥BC,点E是AD的中点,EB=EC.试说明AB与CD相等的理由.
答案
解:∵AD∥BC,
∴∠AEB=∠1,∠DEC=∠2,
∵EB=EC,
∴∠EBC=∠ECB,
∴∠AEB=∠DEC,
在△AEB与△EDC中,
AE=DE
∠AEB=∠DEC
EB=EC
,
∴△AEB≌△EDC,
∴AB=CD.
解:∵AD∥BC,
∴∠AEB=∠1,∠DEC=∠2,
∵EB=EC,
∴∠EBC=∠ECB,
∴∠AEB=∠DEC,
在△AEB与△EDC中,
AE=DE
∠AEB=∠DEC
EB=EC
,
∴△AEB≌△EDC,
∴AB=CD.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
由于AD∥BC,利用平行线的性质可得∠AEB=∠1,∠DEC=∠2,而EB=EC,根据等边对等角可得∠EBC=∠ECB,等量代换可证∠AEB=∠DEC,再结合AE=DE,EB=EC,利用AAS可证△AEB≌△EDC,从而有AB=CD.
本题考查了全等三角形的判定和性质、平行线的性质,解题的关键是证明∠AEB=∠DEC.
证明题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.