试题
题目:
如图,AB∥ED,BC∥EF,AF=CD,且BC=6.
(1)求证:△ABC≌△DEF;
(2)求EF的长度.
答案
证明:(1)∵AF=CD,
∴AF+CF=CD+CF,
即AC=DF,
∵AB∥ED,
∴∠A=∠D,
∵BC∥EF,
∴∠ACB=∠DFE,
在△ACB和△DFE中,
∠A=∠D
AC=DF
∠ACB=∠DFE
,
∴△DEF≌△ABC;
(2)∵△DEF≌△ABC,BC=6,
∴EF=BC=6.
证明:(1)∵AF=CD,
∴AF+CF=CD+CF,
即AC=DF,
∵AB∥ED,
∴∠A=∠D,
∵BC∥EF,
∴∠ACB=∠DFE,
在△ACB和△DFE中,
∠A=∠D
AC=DF
∠ACB=∠DFE
,
∴△DEF≌△ABC;
(2)∵△DEF≌△ABC,BC=6,
∴EF=BC=6.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
(1)由于AF=CD,利用等式性质易得AC=DF,而AB∥ED,BC∥EF,根据平行线的性质易得∠A=∠D,∠ACB=∠DFE,根据ASA易证△DEF≌△ABC;
(2)根据△DEF≌△ABC,易得EF=BC=6.
本题考查了全等三角形的判定和性质、平行线的性质,解题的关键是找出ASA所需要的三个条件.
证明题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.