试题
题目:
(2013·松北区二模)如果正比例函数y=ax(a≠0)与反比例函数y=
b
x
(b≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( )
A.(2,3)
B.(3,-2)
C.(-2,3)
D.(3,2)
答案
D
解:由题设知,-2=a·(-3),(-3)·(-2)=b,
解得a=
2
3
,b=6,
联立方程组得
y=
2
3
x
y=
6
x
,
解得
x
1
=-3
y
1
=-2
,
x
2
=3
y
2
=2
,
所以另一个交点的坐标为(3,2).
或:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).
故选D.
考点梳理
考点
分析
点评
专题
反比例函数图象的对称性.
利用待定系数法求出两函数解析式,然后联立两解析式,解方程组即可得到另一交点的坐标;
或根据两交点关于原点对称求解.
本题考查了反比例函数图象的对称性,联立两函数解析式求交点坐标是常用的方法,也是基本的方法,需熟练掌握,另外,利用对称性求解更简单,且不容易出错.
常规题型.
找相似题
(2012·孝感)若正比例函数y=-2x与反比例函数y=
k
x
图象的一个交点坐标为(-1,2),则另一个交点的坐标为( )
(2012·海南)如图,正比例函数y=k
1
x与反比例函数y=
k
2
x
的图象相交于A、B两点,若点A的坐标为(2,1),则点B的坐标是( )
(2012·恩施州)已知直线y=kx(k>0)与双曲线y=
3
x
交于点A(x
1
,y
1
),B(x
2
,y
2
)两点,则x
1
y
2
+x
2
y
1
的值为( )
(2010·江西)如图,反比例函数
y=
4
x
图象的对称轴的条数是( )
(2009·乌鲁木齐)如图,正比例函数y=mx与反比例函数y=
n
x
(m、n是非零常数)的图象交于A、B两点.若点A的坐标为(1,2),则点B的坐标是( )