试题
题目:
如图,△ABE和△ACD有公共点A,∠BAC=∠DAE=90°,AB=AC,AE=AD,延长BE分别交AC、CD于点M、F.求证:
(1)△ABE≌△ACD;
(2)BF⊥CD.
答案
证明:(1)∵∠BAC=∠DAE=90°,
∴∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3,
在△ABE和△ACD中:
∵
AE=AD
∠1=∠3
AB=AD
∴△ABE≌△ACD(SAS);
(2)∵△ABE≌△ACD,
∴∠B=∠C,
∵∠B+∠4=90°,
又∵∠4=∠5,
∴∠C+∠5=90°,
∴∠MFC=90°,
∴BF⊥CD.
证明:(1)∵∠BAC=∠DAE=90°,
∴∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3,
在△ABE和△ACD中:
∵
AE=AD
∠1=∠3
AB=AD
∴△ABE≌△ACD(SAS);
(2)∵△ABE≌△ACD,
∴∠B=∠C,
∵∠B+∠4=90°,
又∵∠4=∠5,
∴∠C+∠5=90°,
∴∠MFC=90°,
∴BF⊥CD.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
(1)首先根据同角的余角相等可得∠1=∠3,再加上条件AB=AC,AE=AD可利用SAS定理证明△ABE≌△ACD;
(2)根据△ABE≌△ACD可得∠B=∠C,再根据∠B+∠4=90°,∠4=∠5,可得∠C+∠5=90°,进而得到∠MFC=90°,即BF⊥CD.
此题主要考查了全等三角形全等的判定与性质,关键是掌握证明三角形全等的判定方法SSS、SAS、AAS、ASA.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.
证明题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.